547 research outputs found

    Constraints on the depth and geometry of the magma chamber of the Olympus Mons Volcano, Mars

    Get PDF
    The summit caldera of the Olympus Mons volcano exhibits one of the clearest examples of tectonic processes associated with shield volcanism on Mars. The radial distance from the center of the transition from concentric ridges to concentric graben within the oldest crater provides a constraint on the geometry and depth of the subsurface magmatic reservoir at the time of subsidence. Here, researchers use this constraint to investigate the size, shape, and depth of the reservoir. Their approach consists of calculating radial surface stresses corresponding to the range of subsurface pressure distributions representing an evacuating magma chamber. They then compare stress patterns to the observed radial positions of concentric ridges and graben. The problem is solved by employing the finite element approach using the program TECTON

    A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thorium anomaly

    Get PDF
    International audienc

    Mars Orbiter Laser Altimeter

    Get PDF
    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data

    Foreword

    Get PDF
    In 1992 a small workshop in San Juan Capistrano marked the beginning of an innovation in planetary exploration, the Principal Investigator-led mission. NASA announced the establishment of a continuing “line item” in the budget for the development, launch and operation of missions led by a Principal Investigator from inside or outside NASA. These missions were to be less costly than flagship missions that addressed the major objectives of planetary exploration. They would be more focused, developed more quickly for flight, with a limited number of instruments and a limited number of investigators. They would ensure that the smaller but important objectives of the planetary program would be addressed. The first two missions were selected in a mode similar to the earlier selection process to get the program off to a quick start but soon a new process was established. The best mission or pair of missions was to be selected from a group of about thirty proposals. From this process arose missions approved to go to the Moon, bring back solar wind and comet samples, to excavate a crater on a comet, to orbit Mercury, to orbit main belt asteroids, and to identify Earth-like exoplanets

    Evolution of the Olympus Mons Caldera, Mars

    Get PDF
    Extensive high-resolution (15 to 20 m/pixel) coverage of Olympus Mons volcano permits the investigation of the sequence of events associated with the evolution of the nested summit caldera. The sequence of the intra-caldera events is well illustrated by image data collected on orbits 473S and 474S of Viking Orbiter 1. These data cover both the oldest and youngest portions of the caldera floor. The chronology inferred from the observations is presented which in turn can be interpreted in terms of the internal structure of the volcano (i.e., magma chamber depth and the existence of dikes)

    Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios

    Get PDF
    International audienc

    Origin of the p-process radionuclides ⁹²Nb and ¹⁴⁶Sm in the early solar system and inferences on the birth of the Sun

    Get PDF
    The abundances of ⁹²Nb and ¹⁴⁶Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of ⁵³Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for ⁹²Nb and ⁵³Mn cannot be found within the current uncertainties and requires the ⁹²Nb/⁹²Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for ⁹²Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings

    Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour

    Get PDF
    The fundamental scientific objectives for future spacecraft exploration of Jupiter's moon Europa include confirmation of the existence of subsurface ocean beneath the surface ice shell and constraints on the physical properties of the ocean. Here we conduct a comprehensive simulation of a multiple-flyby mission. We demonstrate that radio tracking data can provide an estimate of the gravitational tidal Love number k2 with sufficient precision to confirm the presence of a liquid layer. We further show that a capable long-range laser altimeter can improve determination of the spacecraft position, improve the k2 determination (2 (3-4% error), which is directly related to the amplitude of the surface tidal deformation. These measurements, in addition to the global shape accurately constrained by the long altimetric profiles, can yield further constraints on the interior structure of Europa. Key Points A multiple-flyby mission to Europa can recover key geophysical parameters Laser altimetry can uniquely and accurately recover the global shape of Europa Laser altimetry enables the recovery of h2 to constrain the ice shell thicknes

    Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical Models

    Get PDF
    Data obtained recently by the Mars Orbiter Laser Altimeter (MOLA) were used to study the statistical properties of the topography and slopes on Mars. We find that the hemispheric dichotomy, manifested as an elevation difference, can be described by long baseline tilts but in places is expressed as steeper slopes. The bimodal hypsometry of elevations on Mars becomes unimodal when referenced to the center of figure, contrary to the Earth, for which the bimodality is retained. However, ruling out a model in which the elevation difference is expressed in a narrow equatorial topographic step cannot be done by the hypsometry alone. Mars' slope distribution is longer tailed than those of Earth and Venus, indicating a lower efficiency of planation processes relative to relief-building tectonics and volcanics. We define and compute global maps of statistical estimators, including the interquartile scale, RMS and median slope, and characteristic decorrelation length of the surface. A correspondence between these parameters and geologic units on Mars is inferred. Surface smoothness is distinctive in the vast northern hemisphere plains, where slopes are typically <0.5°. Amazonis Planitia exhibits a variation in topography of <1 m over 35-km baselines. The region of hematite mineralization in Sinus Meridiani is also smooth, with median slopes lower than 0.4°, but does not form a closed basin. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor. The addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Among their application, these MOLA-derived roughness measurements can help characterize sites for landing missions

    Acceleration Profiles and Processing Methods for Parabolic Flight

    Full text link
    Parabolic flights provide cost-effective, time-limited access to "weightless" or reduced gravity conditions experienced in space or on planetary surfaces, e.g. the Moon or Mars. These flights facilitate fundamental research - from materials science to space biology - and testing/validation activities that support and complement infrequent and costly access to space. While parabolic flights have been conducted for decades, reference acceleration profiles and processing methods are not widely available - yet are critical for assessing the results of these activities. Here we present a method for collecting, analyzing, and classifying the altered gravity environments experienced during a parabolic flight. We validated this method using a commercially available accelerometer during a Boeing 727-200F flight with 2020 parabolas. All data and analysis code are freely available. Our solution can be easily integrated with a variety of experimental designs, does not depend upon accelerometer orientation, and allows for unsupervised and repeatable classification of all phases of flight, providing a consistent and open-source approach to quantifying gravito-intertial accelerations (GIA), or gg levels. As academic, governmental, and commercial use of space increases, data availability and validated processing methods will enable better planning, execution, and analysis of parabolic flight experiments, and thus, facilitate future space activities.Comment: Correspondence to C.E. Carr ([email protected]). 15 pages, 4 figures, 3 supplemental figures. Code: https://github.com/CarrCE/zerog, Dataset: https://osf.io/nk2w4
    corecore